Acque di prima pioggia: caratterizzazioni e possibilità di controllo

prof. ing. Alessandro Paoletti

Convegno "Acque di prima pioggia"

Università di Genova

21 novembre 2003

PARAMETRI CARATTERISTICI:

Concentrazioni nelle caditoie stradali [Artina e Maglionico, 1997]

Data	05/06/1996	25/06/1996	28/08/1996	11/11/1996
Tempo secco antecedente [ore]	177	48	64	72
Solidi Sospesi 1 [mg/l]	1212	244	512	504
Solidi Sospesi 2 [mg/l)	1304	212	1162	372
COD 1 [mg/l]	809	489	327	443
COD 2 [mg/l]	766	329	647	3 70
Oli Minerali 1 [mg/l]	**	0,65	9,9	0,9
Oli Minerali 2 [mg/l]	**	1,24	10,2	3,42

PARAMETRI CARATTERISTICI:

Caratteristiche delle acque di tempo di pioggia di fognature separate e unitarie di Washington D.C. (USA) [De Filippi e Shih, 1971].

	Fognatura sepa	rata	Fognatura unitaria		
Parametro	Valori estremi	Media	Valori estr	emi	Media
Solidi Sospesi [mg/l]	130 ÷ 11280	1697	35 ÷ 20	00	622
Solidi Sospesi Volatili [mg/l]	0 ÷ 880	145	10 ÷ 12	80	245
COD [mg/l]	29 ÷ 1514	335	80 ÷ 17	60	382
BOD [mg/l]	3 ÷ 90*	19*	$10 \div 47$	0	71
N totale [mg/l]	$0.5 \div 6.5$	2,1	1,0 ÷ 1	16,5	35
Fosfati totali [mg/l]	$0,2 \div 4,5$	1,3	$0.8 \div 9$	9,4	3,0
Coliformi totali [n° / 100 ml]	120000 ÷ 3200000	600000	420000 ÷ 58	00000	2800000
Coliformi fecali [n° / 100 ml]	40000 ÷ 1300000	310000	240000 ÷ 50	40000	2400000
Streptococchi fecali [n° / 100 ml]	3000 ÷ 60000	21000	1000 ÷ 49	000	17200
* Escluso un evento in					

PARAMETRI CARATTERISTICI:

Valori medi delle concentrazioni nelle acque di tempo di pioggia in bacini di diverse caratteristiche [Lindholm e Balmér, 1978].

Confronto tra le concentrazioni medie di alcuni parametri d'inquinamento nella fognatura unitaria di Lione e in quella separata di Sydney [Carleton, 1990].

	Syd	Lione	
Parametro	Sfiori	Acqua pluviale	Sfiori
BOD [mg/l]	59	47	42
COD [mg/l]	180	132	145
SS [mg/l]	186	141	170

Località	Oslo 1	Sand.	Trond 1	Oslo 2*	Oslo 2	Oslo 3	Oslo 4	Trond 2
tipol. urb.	R/C	R	R/C	Ce	Се	SR	SR	SR
sist. fogn.	U	U	U	S	S	S	S	S
area [ha]	219	380	21	10	10	37	37	20
imp. [%]	69	12	37	97	97	43	33	18
dens. [ab/ha]	342	25	93	-	-	155	123	30
pend. [%]	2,8	2,5	1,1	5,3	5,3	4,1	9,3	5,3
BOD ₇ [g/m ³]	200	103	-	-	-	-	-	-
COD [g/m³]	530	268	352	244	160	73	63	74
SS [g/m³]	721	424	510	1038	303	367	86	929
VSS [g/m³]	188	168	193	189	75	46	33	72
Ptot [g/m³]	2,4	4	3	1,2	0,6	0,5	0,8	0,3
Ntot [g/m³]	8,2	14,4	-	4,2	3,2	4,9	5,9	2,3
Pb [g/m³]	0,45	0,08	-	0,82	0,41	0,1	0,05	0,07
Zn [g/m³]	1,07	0,64	-	1,73	0,57	0,17	0,32	0,1
Çu [g/m³]	0,17	0,11	-	0,52	0,19	0,04	0,13	0,03
Cond. Cond. Cond. Trend. Trend.								

Sand. = Sandefjord, Trond. = Trondheim.

Tipologia abitativa:

R = residenziale, C = commerciale, Ce = centro cittadino, SR = suburbano residenziale.

Fognatura: U = unitaria, S = separata.

^{*} Serie che include una pioggia molto intensa che la serie successiva non include.

BACINO DI PICCHIANTI (LI)

Le concentrazioni medie di SS e COD nei singoli eventi presentano i seguenti campi di variabilità:

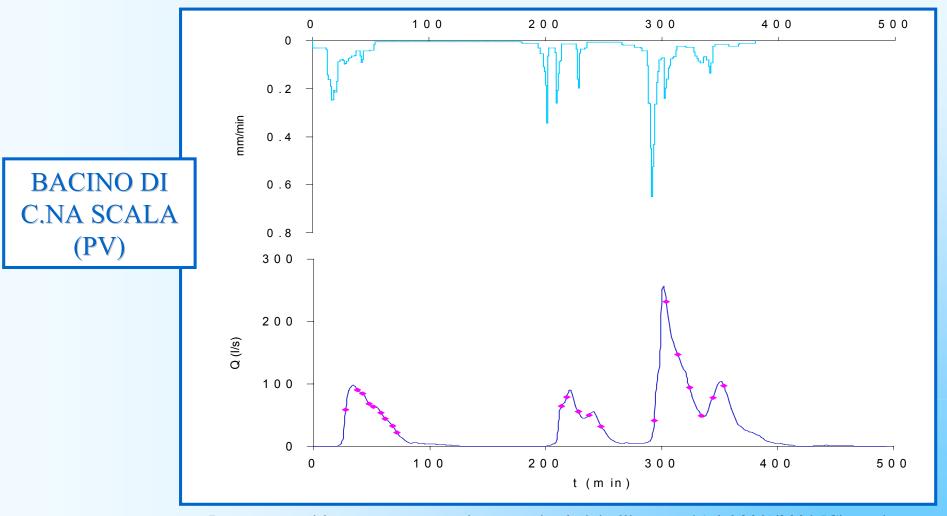
- $SS : 26 \div 568 \text{ mg/l};$

- COD: $31 \div 267 \text{ mg/l}$;

Le concentrazioni massime di SS e COD nei singoli eventi presentano i seguenti campi di variabilità:

- SS: $43 \div 2.360 \text{ mg/l}$;

- COD: $56 \div 628 \text{ mg/l}$;

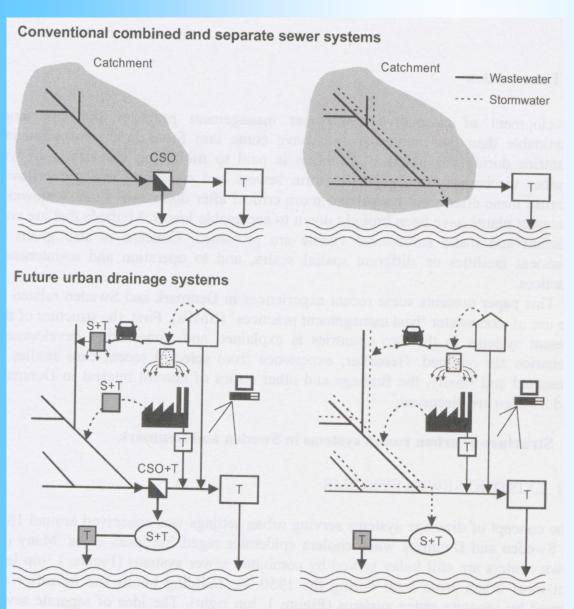

I valori medi di SS e COD per tutti i 14 eventi sono pari a:

- SS: 216 mg/l;

- COD: 128 mg/l.

		Durata tempo secco	Se	olidi sospe	si		COD	
Evento No.	Data	antecedente	media	max	Carico	media	max	Carico
		[giorni]	[mg/l]	[mg/l]	[kg]	[mg/l]	[mg/l]	[kg]
1	19/03/2000	95	568	2360	264	243	576	113
2	28/03/2000	8.06	283	480	10	187	251	6
3	23/04/2000	5.05	66	98	45	27	34	19
4	20/09/2000	18	190	888	83	267	628	117
5	10/10/2000	2	95	254	34	111	209	40
6	15/10/2000	5	105	724	70	77	612	52
7	31/10/2000	2	282	440	158	148	306	83
8	02/11/2000	1	83	164	59	69	216	49
9	09/11/2000	2.02	442	614	158	93	128	33
10	14/11/2000	1.07	249	498	157	72	80	45
11	24/02/2001	14.05	69	146	6	138	411	11
12	28/02/2001	2	26	43	6	31	56	7
13	24/01/2002	10	368	534	132	265	452	95
14	24/01/2002	0.05	207	236	13	63	81	4

Qualità dell'acqua di dilavamento raccolta da una fognatura solo pluviale in un bacino a carattere industriale [Milano e altri, 2002]).

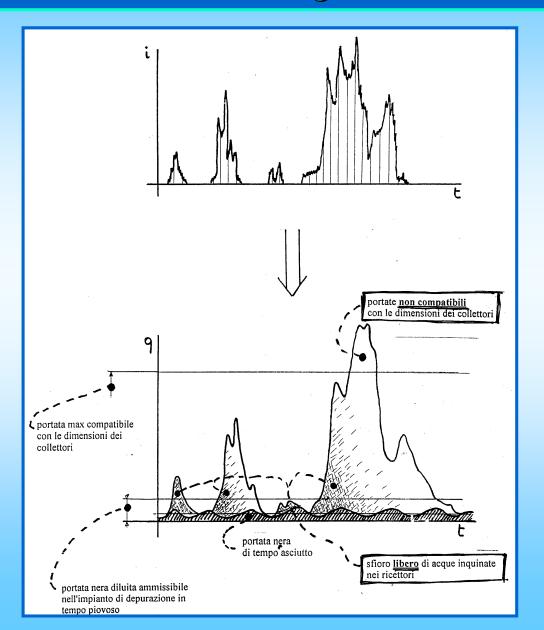

Ietogramma, idrogramma e campionamenti relativi all'evento 14 del 20/4/2001 [Ciaponi e altri, 2002]

BACINO DI C.NA SCALA (PV)

Parametro	Unità di	Valore	Valore	Valore
	misura	medio	minimo	massimo
Conducibilità	$\mu S/cm$	219,6	86	747
specifica				
COD	mg/l	483,7	28	2434
BOD5	mg/l	280,6	8	1780
Idrocarburi	mg/l	3,87	0,13	38,4
Solidi sospesi	mg/l	502,3	20	2360
Solidi	ml/l	18,2	0,8	100
sedimentabili				
Azoto totale	mg/l	22,81	1,51	86,6
Azoto	mg/l	8,36	0,45	39,6
ammoniacale				
Fosforo	mg/l	2,7	0,22	13,1
Piombo	mg/l	0,32	0,001	13,1
Zinco	mg/l	0,54	0,01	4,92

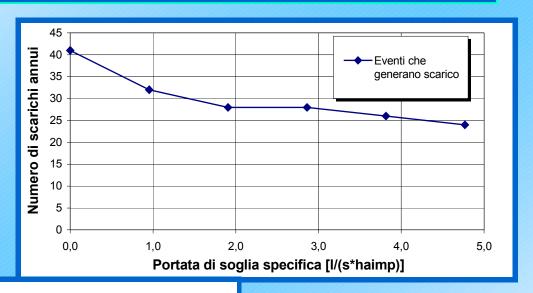
Campo di variabilità e valori medi aritmetici dei parametri di qualità per i 162 campioni prelevati in tempo di pioggia [Ciaponi e altri, 2002]

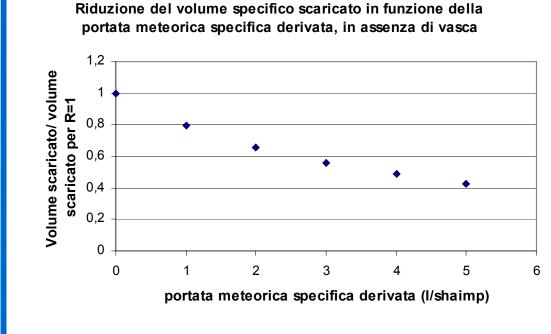
Schemi di sistemi di drenaggio urbano


- Acque reflue
- **– –** Acque meteoriche

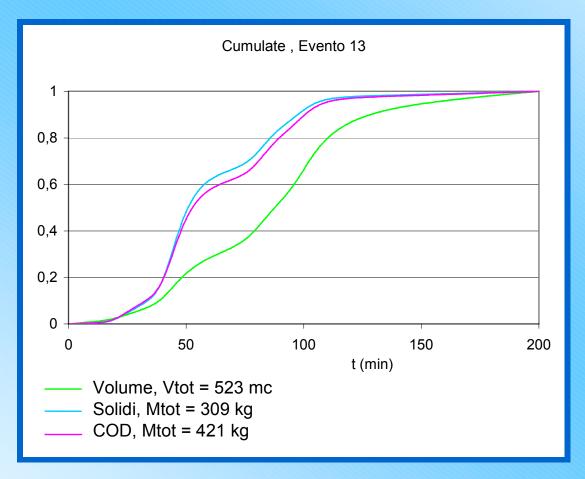
S = Invasi di prima pioggia o volano

T = Impianti di trattamento

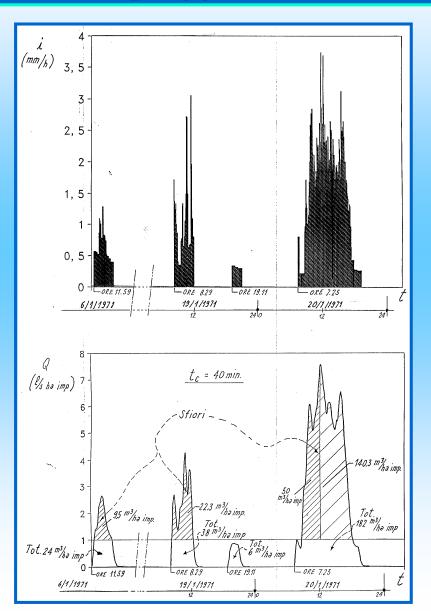

P. S. Mikkelsen, Workshop NATO. Roma 2003

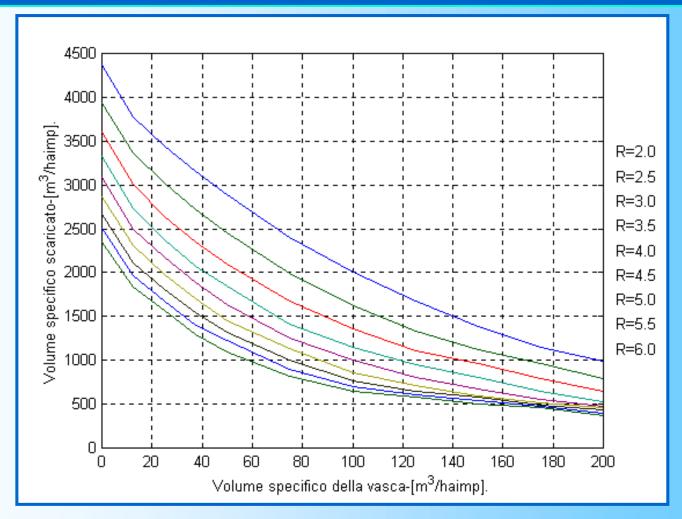

Schema di funzionamento degli scaricatori di piena

Frequenza di sfioro e volume effluente dagli scaricatori


BACINO DI C.NA SCALA (PV) Eventi che generano scarico al variare della portata di soglia specifica.

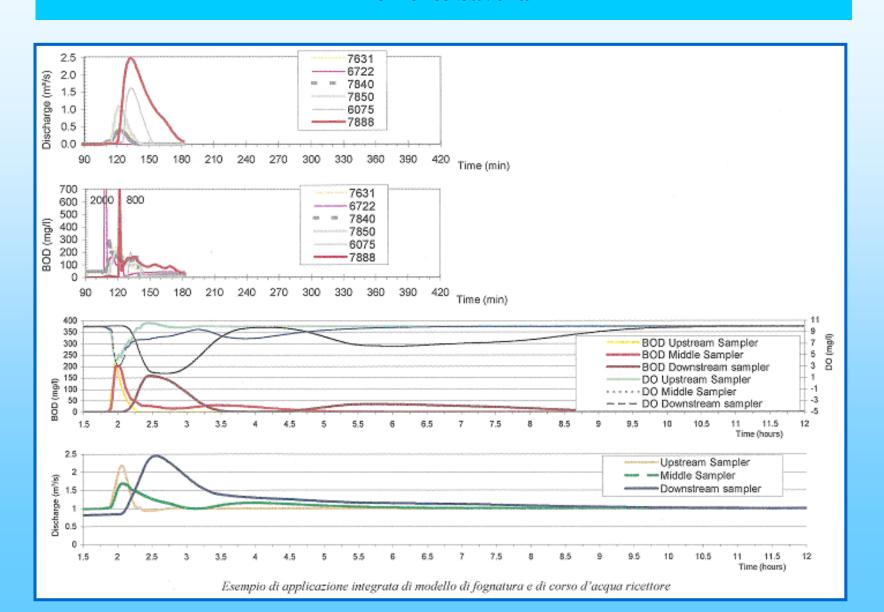
Riduzione del volume scaricato in funzione della portata meteorica specifica derivata


Le "prime piogge" di dilavamento (first flush)


BACINO DI C.NA SCALA (PV)

Cumulate dei volumi di deflusso e delle masse di SS e COD rapportate ai valori globali

Schema di funzionamento delle vasche di prima pioggia



Il controllo dell'inquinamento delle acque meteoriche di dilayamento

Volume specifico scaricato $[m^3/ha_{imp}]$ in funzione del rapporto di diluizione e del volume specifico della vasca di prima pioggia $[m^3/ha_{imp}]$.

EFFETTO DI UNO SCARICO DI PIENA DELLA CITTA' DI BOLOGNA Torrente Savena

In base ai dati sperimentali suddetti, è interessante stimare l'importanza relativa dell'inquinamento veicolato dalle acque meteoriche di dilavamento rispetto a quello che i ricettori ricevono a valle della depurazione.

Potrebbe infatti sussistere qualche dubbio in proposito considerando:

- •da una parte, che l'inquinamento meteorico è limitato poiché non tutte le superfici urbane sono oggetto di scarichi inquinati e inoltre che il dilavamento meteorico avviene solo in tempo di pioggia, mentre lo scarico di acque reflue trattate avviene continuativamente.
- •dall'altra parte, che anche l'inquinamento effluente dagli impianti di depurazione è limitato data la loro stessa presenza (l'efficienza depurativa è dell'ordine dell'80 90%).

Per effettuare tale confronto può essere utile riferirsi ad un sistema separato "teorico", formato da:

- •una rete esclusivamente nera che raccoglie e convoglia alla depurazione tutti gli scarichi neri
- •una rete esclusivamente pluviale che raccoglie perfettamente ed avvia allo scarico diretto nel ricettore, senza alcuna depurazione, tutte le acque meteoriche.

il ricettore è sottoposto:

sia agli inquinanti scaricati dalla rete pluviale.

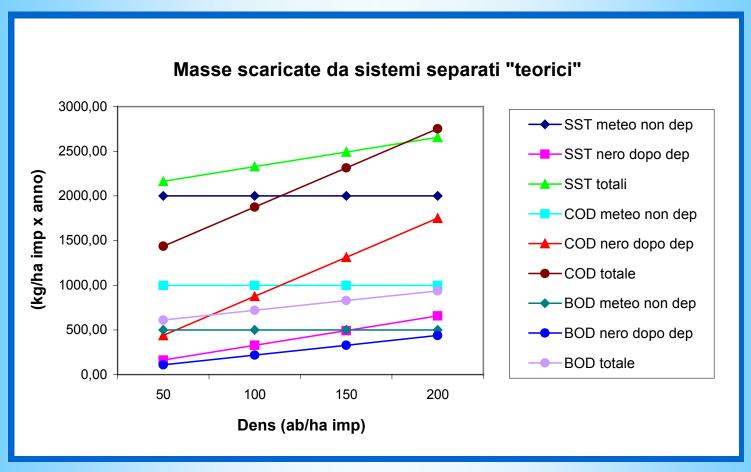
sia agli inquinanti effluenti dall'impianto di depurazione.

Impatto sul ricettore di fognature separate "teoriche"

Acque meteoriche di dilavamento :
precipitazione annua = 1000 mm
superficie impermeabile inquinata = 50%
concentrazione media SST = 400 mg/l
concentrazione media COD = 200 mg/l
concentrazione media BOD₅ = 100 mg/l

Dotazione idrica immessa in fognatura : 250 l/ ab giorno
Carichi specifichi nelle acque nere:
SST = 90 g/ab giorno
COD = 120 g/ab giorno
BOD₅ = 60 g/ab giorno

Efficienza nella depurazione :
rimozione SST = 90%
rimozione COD = 80%


rimozione $BOD_5 = 90\%$

		SST		
Dens	M _{scar}	M _{dep}	M_{tot}	rapporto
(ab/ha _{imp})	(kg/ha _{imp} anno)	(kg/ha _{imp} anno)	(kg/ha _{imp} anno)	M _{scar} /M _{dep}
50	2000	164,25	2164,25	12,18
100	2000	328,5	2328,5	6,09
150	2000	492,75	2492,75	4,06
200	2000	657	2657	3,04
		COD		
Dens	M _{scar}	M _{dep}	M_{tot}	rapporto
(ab/ha _{imp})	(kg/ha _{imp} anno)	(kg/ha _{imp} anno)	(kg/ha _{imp} anno)	M _{scar} /M _{dep}
50	1000	438	1438	2,28
100	1000	876	1876	1,14
150	1000	1314	2314	0,76
200	1000	1752	2752	0,57
		BOD₅		
Dens	M _{scar}	M _{dep}	\mathbf{M}_{tot}	rapporto
(ab/ha _{imp})	(kg/ha _{imp} anno)	(kg/ha _{imp} anno)	(kg/ha _{imp} anno)	M _{scar} /M _{dep}
50	500	109,5	609,5	4,57
100	500	219	719	2,28
150	500	328,5	828,5	1,52
200	500	438	938	1,14

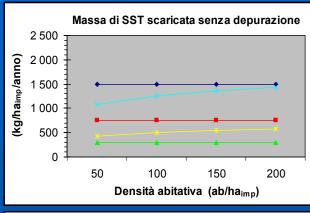
COT

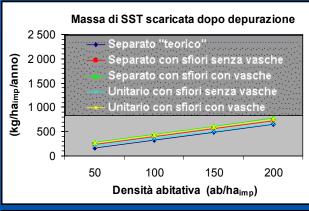
Masse (kg/ha_{imp} anno) di SST, COD, BOD₅ scaricate nei ricettori da una rete separata "teorica" in funzione della densità abitativa (ab/ha_{imp})

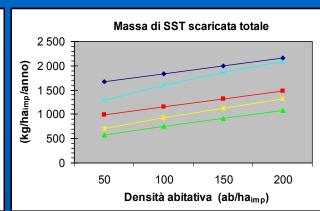
Impatto sul ricettore di fognature separate "teoriche"

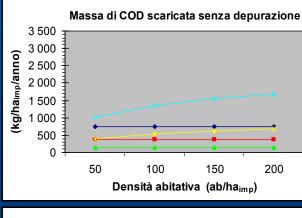
Masse (kg/ ha_{imp} anno) di SST, COD, BOD_5 scaricate nei ricettori da una rete separata "teorica" in funzione della densità abitativa (ab/ ha_{imp}). I dati derivano dai parametri indicati nel testo.

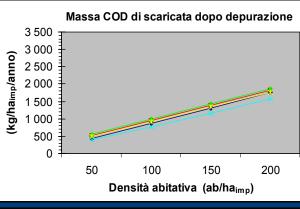
SST, COD, BOD immessi nel ricettore da fognature unitarie o separate, con scaricatori e con o senza vasche di prima pioggia.

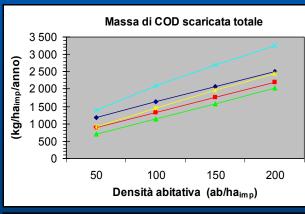

					Risultati	SS		
			Dens	M scar	M dopo dep	M tot	rapporto	
			(ab/haimp)	(kg/haimp an)	(kg/haimp an)	(kg/haimp aı	· ·	p
		Sep cSsV	50	1000	264,25	1264,25	· ·	
				Risultati	COD		2,33	
	Sep cSsV	50	500	538	1038		0,93	
		100	500	976	1476	(0,51	
		150	500	1414	1914	(0,35	
			Risult	ati BO	D5		0,27 0,23 0,61	
Sep cSsV	50	250	134,			I XN	0,33	
•	100	250	244		<i>'</i>	1.02	0,19	
	150	250	353,	5 603	,5	0.71	0,14	
	200	250	463	71	3	0.74	0,1	
Sep cScV	50	100	149,	5 249	,5	U n /	2,01	
_	100	100	259	35	9	U 19	1,77	
	150	100	368,	5 468	,5	11 / /	1,34	
	200	100	478	57	8	\mathbf{U} / \mathbf{I}	1,00	
Uni cSsV	50	547,64	104,7	4 652,	38	7/1	0,83 0,6 0,78	
	100	703,27	198,6	57 901,	94	1 74	0,47	
	150	798,94	298,6	51 1097	,55	/ nx	0,39	
	200	863,72	401,6	53 1265	,35	2,15	0,39	
Uni cScV	50	219,06	132,1		18	1,66		
	100	281,31	233,8	· ·		1,2		
	150	319,58	338,5	,		0,94		
	200	345,49	444,8	31 790	,3	0,78		

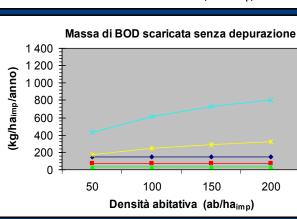

Quadro riassuntivo carichi inquinanti

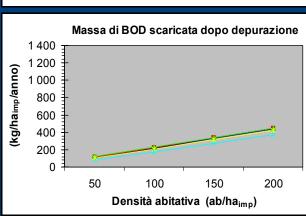

- Pioggia = 1000 mm/anno.
- Accumulo inquinanti su 50% sup. imp.
- Lavaggio assente.

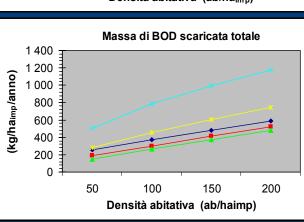

COD = 150 mg/lBOD = 30 mg/l


-SST = 300 mg/l



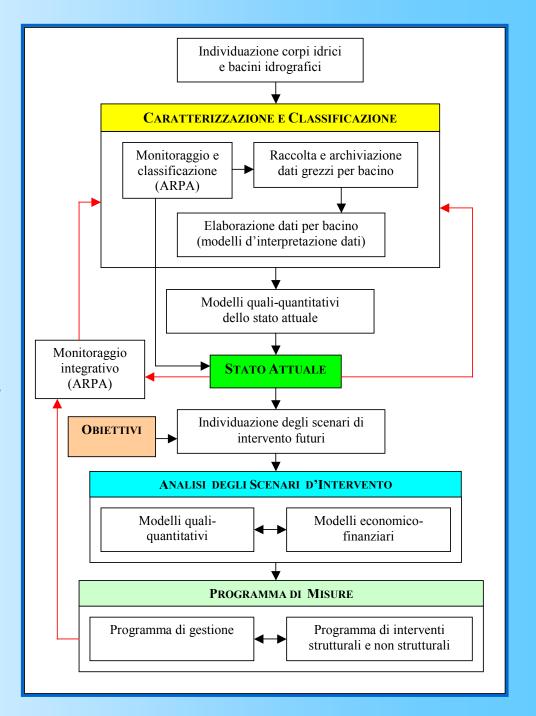






Anche nei casi qui considerati la componente di impatto sul ricettore dovuta allo scarico di acque meteoriche non trattate è assai rilevante, tanto da risultare maggiore in molti casi di quella derivante dalle acque reflue trattate.

Confrontando globalmente tutti i risultati ottenuti sia nei casi esposti, si evince una sorta di classifica così composta:



Poiché i sistemi separati "reali" presentano sovente collegamenti scorretti di acque nere nella rete pluviale, il confronto tra sistemi unitari e separati dotati di attrezzature analoghe si ribalta a favore dei sistemi unitari, anche per modeste percentuali di abitanti collegati alla rete pluviale anziché a quella nera.

In conclusione, la presenza di un impianto di trattamento dei reflui anche molto efficiente realizza una buona protezione ambientale solo se anche una aliquota consistente delle acque meteoriche di dilavamento viene trattata in modo appropriato.

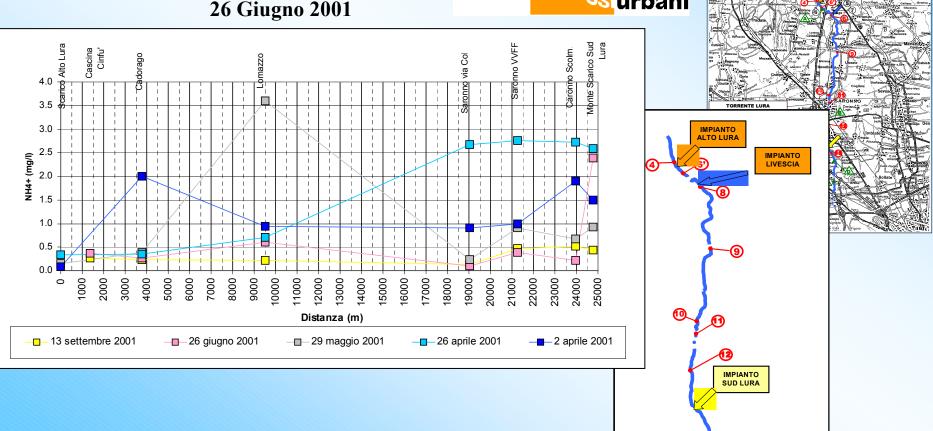
Piano di tutela delle acque

SCHEMA A BLOCCHI DELLE ATTIVITA'

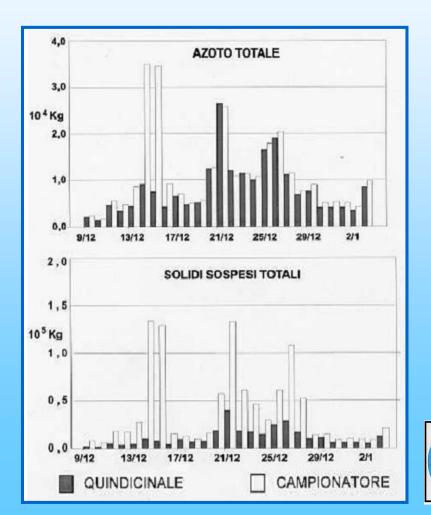
La tutela delle acque

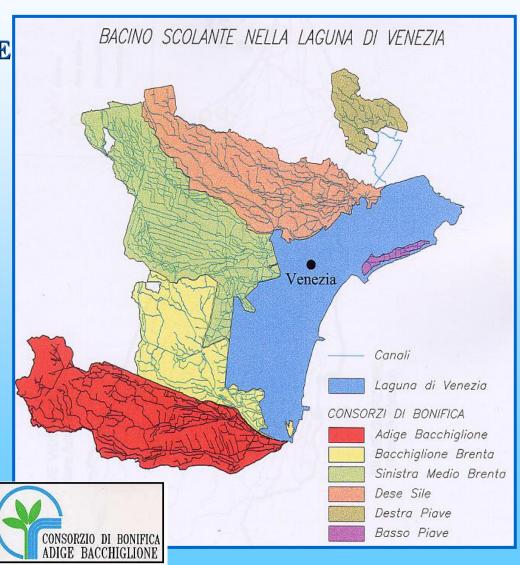
OBIETTIVI

- ➤ MANTENIMENTO O RIEQUILIBRIO DEL BILANCIO IDRICO TRA DISPONIBILITA' E PRELIEVI
- >DEFINIZIONE DEGLI USI COMPATIBILI DELLE RISORSE IDRICHE
- >STIMA DELLE CARATTERISTICHE DI QUALITA' DEI CORPI IDRICI
- >DEFINIZIONE DEGLI SCENARI DI INTERVENTO PER IL CONSEGUIMENTO DEGLI OBIETTIVI DI QUALITA'


La tutela delle acque

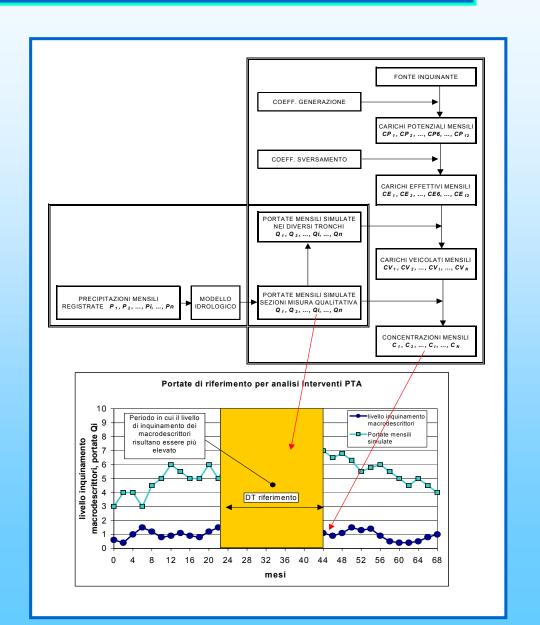
REGIMI CRITICI DI MAGRA: IL TORRENTE LURA


STUDIO TORRENTE LURA STAZIONI DI CAMPIONAMENTO


26 Giugno 2001

La tutela delle acque

REGIMI CRITICI DI PIENA: L'AREA ADIGE-BACCHIGLIONE

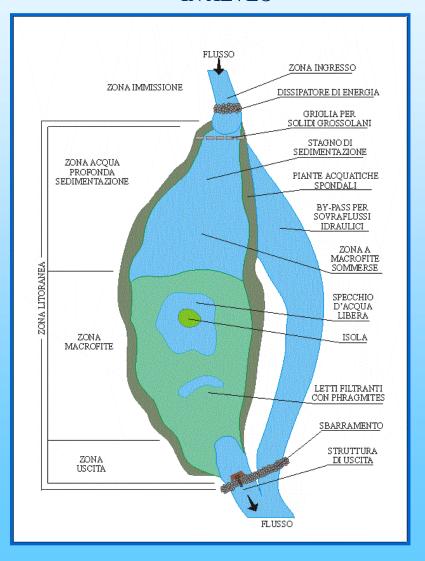

Modelli quali-quantitativi dei corpi idrici

MODELLI DI SIMULAZIONE IN CONTINUO "FISICAMENTE BASATI"

- •Permettono una migliore comprensione dei processi naturali
- •Utilizzano algoritmi e parametri legati ad un significato fisico
- •Forniscono indicazioni sulle sezioni prioritarie per l'adeguamento della rete di monitoraggio
- •Consentono il raffronto fra diversi scenari di gestione in relazione alla variabilità naturale
- •Sono versatili ed adatti a futuri aggiornamenti ed integrazioni in relazione allo sviluppo di studi e monitoraggio

Modelli quali-quantitativi dei corpi idrici

METODOLOGIA PER
L'INDIVIDUAZIONE DELLA
COMPONENTE IDROLOGICA
PER L'ANALISI DEGLI
INTERVENTI DEL PTA



Comune di PARMA Qualità del territorio e delle acque

Schemi zone umide (wetlands)

SCHEMA WETLAND IN ALVEO

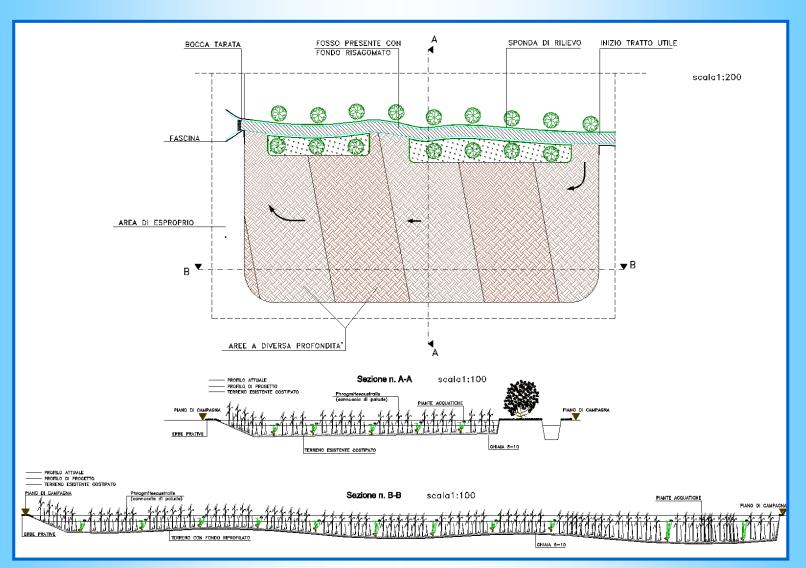
SCHEMA WETLAND FUORI ALVEO

Wetlands a scopo multiplo

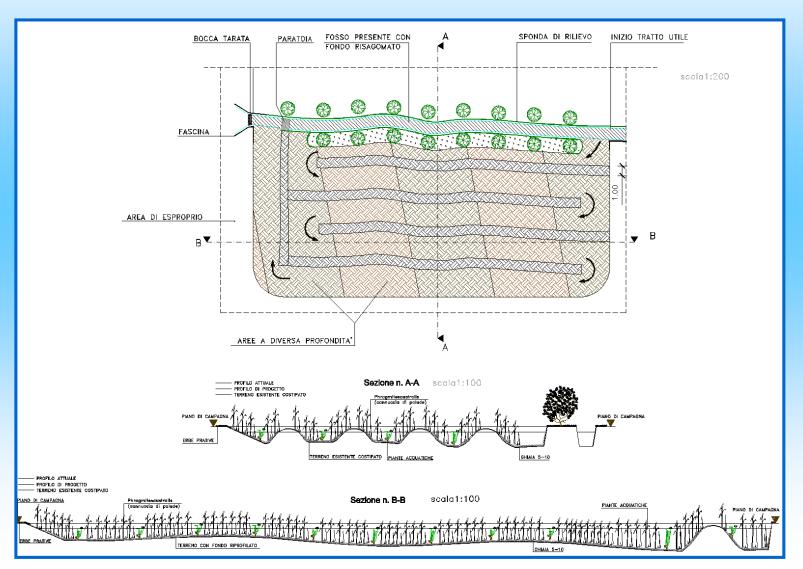
CONSORZIO DI BONIFICA DESE SILE WETLAND A SCOPO MULTIPLO. SIMULAZIONI FOTOGRAFICHE.

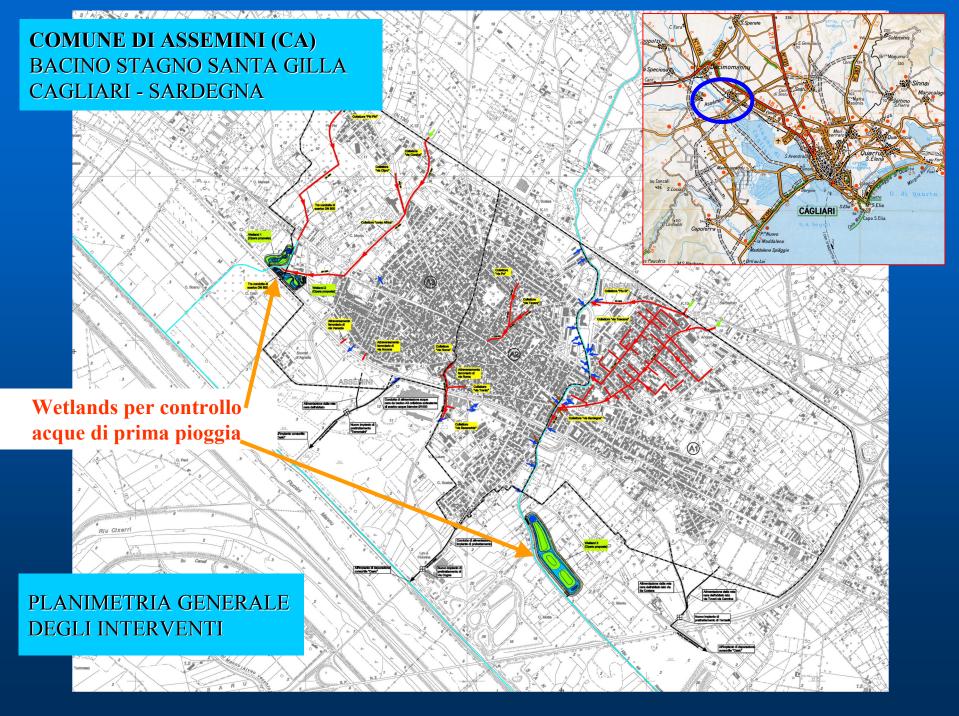
Esempio di area interessata dalle realizzazione di unavasca di laminazione ad uso multipio (prima dell'intervento)

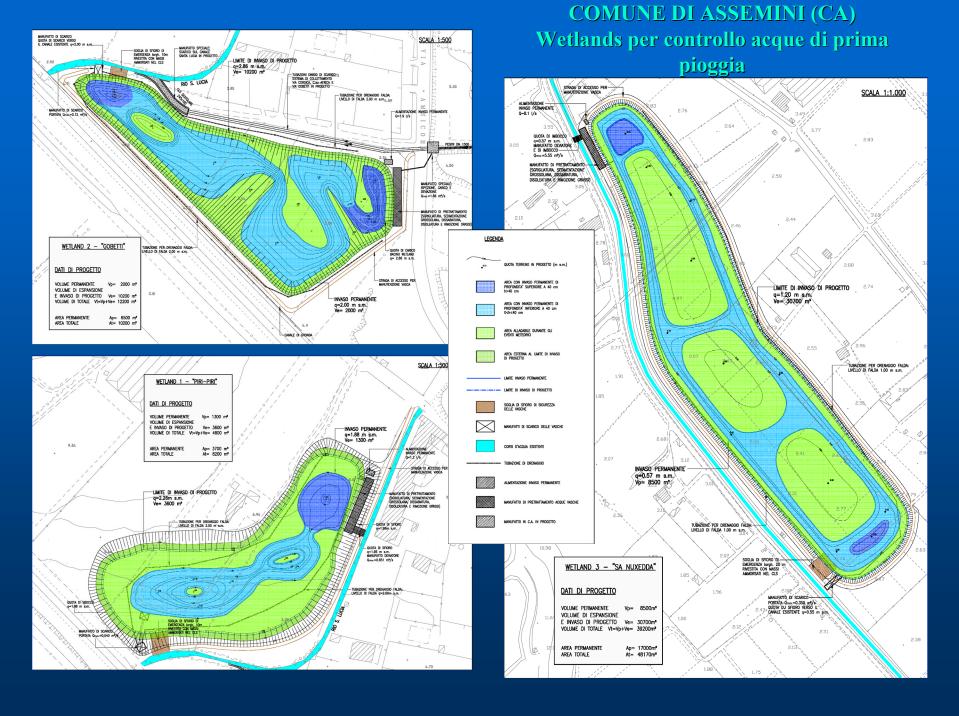
Esempio di area interessata dalle realizzazione di unavasca di laminazione ad uso multiplo (prima dell'intervento)


La stessa area dopo l'intervento

La stessa area dopo l'intervento

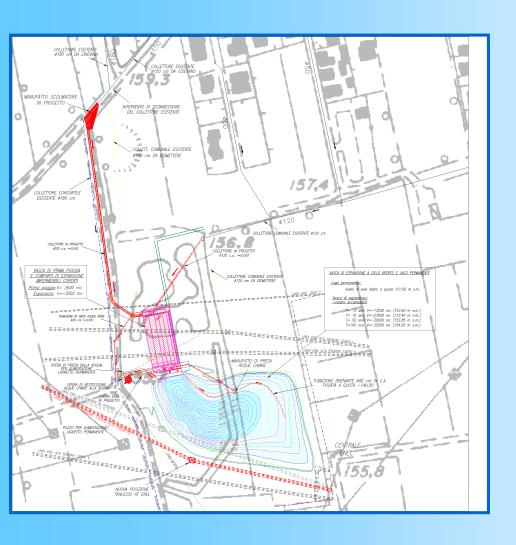

Wetland in alveo


STRUTTURA A STAGNO (POND)



Wetland in alveo

STRUTTURA A CANALE



Consorzio di Bonifica di Bergamo Vasche di prima pioggia e vasche volano

PROGETTO ESECUTIVO VASCA VOLANO PER LE PORTATE METEORICHE DI CISERANO (BG)

