carichi inquinanti superficiali accumulati per giorno di tempo secco in bacini urbanizzati

valori riportati per lunghezza della cunetta drenante

Tipologia di uso del suolo		BOD ₅	COD	azoto totale	fosforo totale	coliformi totali	DD
		g	g	g	g P-PO₄	MPNx10 ⁶	g
		100 ml*d	100 ml*d	100 ml*d	100 ml*d	100ml*d	100 ml*d
residenziale	ville a schiera	5,2086	41,6686	0,5000	0,0521	1,3542	1.041,714
	edifici	12,3220	136,9114	2,0879	0,1711	9,2415	3.422,784
	commerciale	37,8143	191,5271	2,0135	0.3438	8,3486	4.910,951
industriale		20,5367	273,8227	2,9436	0,2054	6,8456	6.845,568
aree a verde o terreni non coltivati							2,2322
intervallo dei valori		5÷40	40÷300	0,5÷3,0	0,05÷0,35	1 ÷ 10	1.000÷7.000

SWMM, "RUNOFF": FASE DI DILAVAMENTO DEGLI INQUINANTI

La procedura di calcolo applicata nel codice *Runoff* si basa sull'ipotesi che il processo di dilavamento degli inquinanti è proporzionale all'entità del deflusso superficiale.

La massa cumulata di un generico inquinante, *i*, dilavata all'istante *t* è descritta da una legge di tipo esponenziale e la variazione di massa inquinante sul bacino varia in funzione della relazione

$$dM_{bi} / dt = -R_d^* r_d(t)^{wd} M_{bi}(t)$$

in cui

 $r_d(t) = Q(t)/A$ portata specifica di deflusso

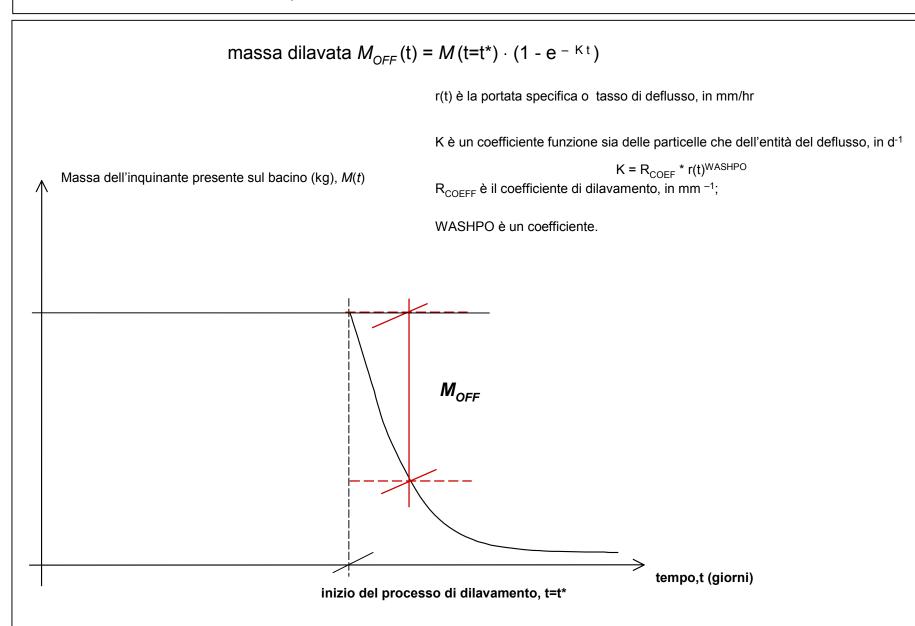
Q(t) portata defluente attraverso la sezione di studio

A superficie del bacino drenante

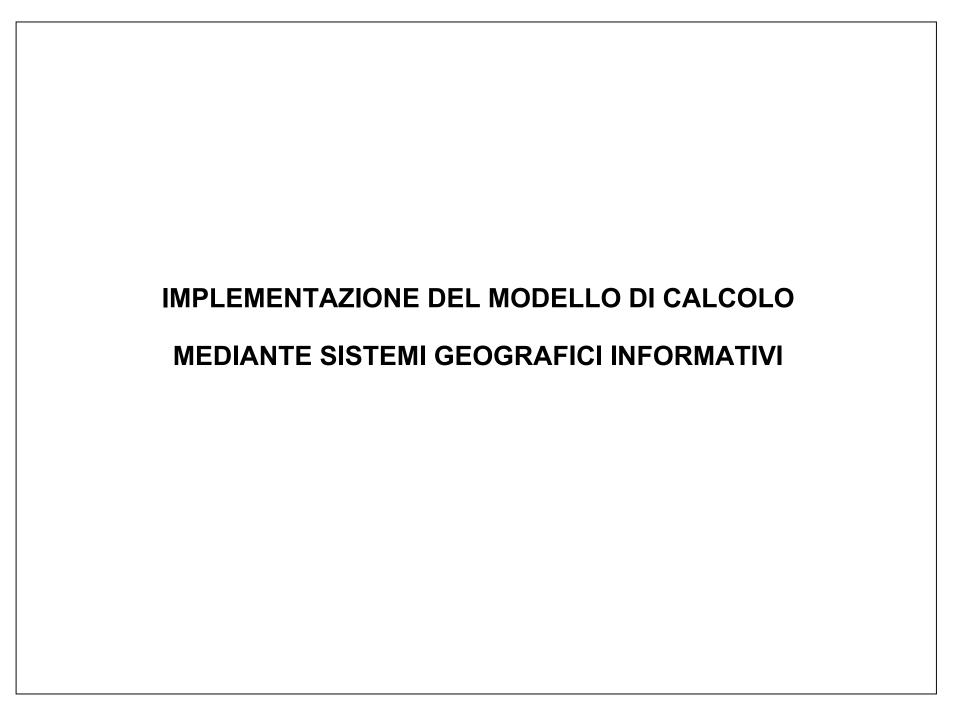
R_d coefficiente di dilavamento

w_d coefficiente adimensionale.

SWMM, "RUNOFF": FASE DI DILAVAMENTO DEGLI INQUINANTI


La concentrazione del generico inquinante nella portata defluente è data invece dalla:

$$c_i(t) = (dM_{bi}/dt)/Q(t) = -[R_d * r_d(t)^{wd} * M_{bi}(t)]/[r_d(t) * A] = -(R_d/A)^* r_d(t)^{(wd-1)*}M_{bi}(t)$$


- il carico del generico inquinante defluito con le acque di pioggia ad un determinato istante di tempo, $C_{inq}(t)$, viene calcolato attraverso la determinazione di
- volume idrico defluito attraverso la sezione di studio, $V_i(t)$,
- concentrazione inquinante, $c_{inq}(t)$,

$$C_{inq}(t) = V_i(t) * c_{inq}(t) = \int_{t=0,t} Q(t) c_{inq}(t) dt$$

SWMM, "RUNOFF": FASE DI DILAVAMENTO DEGLI INQUINANTI

concentrazione $c(t) = (dM_{bi}/dt) / Q(t) = (R_{COEFF}/A_b)^* r(t)^{WASHPO-1} * M(t^*)]$

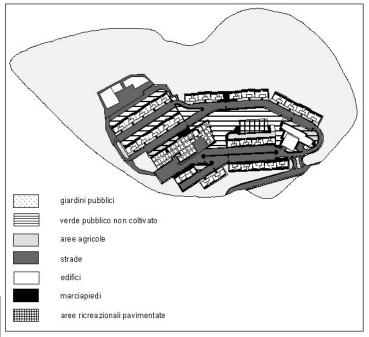
implementazione della fase di input dei dati mediante ausilio di GIS

Modello digitale del terreno Parametri di input caratterizzanti i sottobacini ed i canali elementari

Dati sui sottobacini

dati sui canali

- area
- ampiezza
- % impermeabile
- pendenza
- · coefficiente di scabrezza
 - per l'area impermeabile
 - per l'area permeabile
- altezza di accumulo
 - per l'area impermeabile
 - per l'area permeabile
- coeff. eq. di Horton
 - tasso di infiltrazione min e max
 - tasso di decadimento

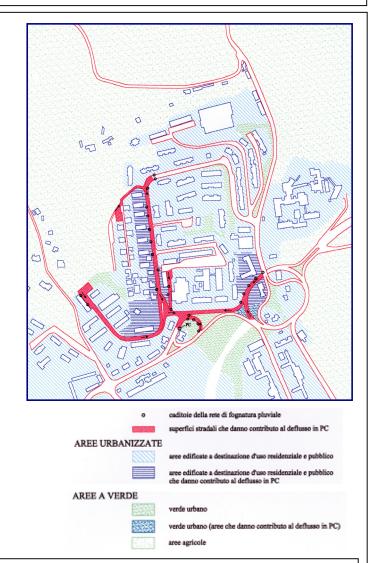

- sezione
- lunghezza
- pendenza longitudinale
- · coefficiente di scabrezza
- · altezza idrica massima

dati sulle caditoie

Bacino sperimentale di "Malvaccaro": mappa di uso del suolo

L'area urbanizzata è completamente adibita ad uso residenziale

- popolazione 1500 abitanti


- l'altitudine tra 770 and 870 m.s.l.m.

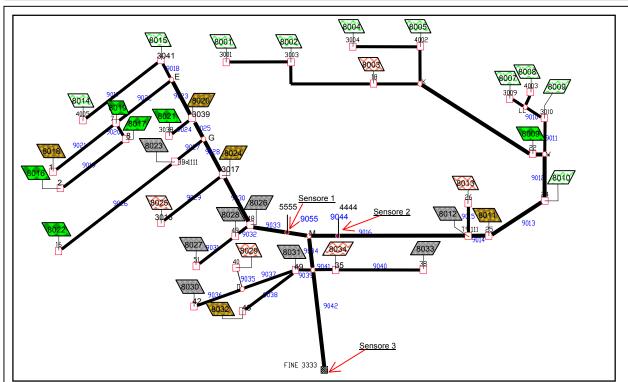
 i collettori della rete di fognature della acque pluviali sono costituiti da tubi in PVC di sezione circolare e diametro di 500 mm.

superficie complessivasuperficie dell'area urbanizzatasuperficie ad uso:	18 ha 6.28 ha
stradale	2.45 ha
edifici	2.06 ha
marciapiedi	1.06 ha
giardini	0.53 ha

area urbano di "Parco Aurora": modello digitale del terreno e carta di uso del suolo

L'area urbanizzata è completamente adibita ad uso residenziale - l'altitudine tra 770 and 740 *m.s.l.m.*

- superficie del bacino drenante 3.97 ha


- superficie dell'area impermeabile 2.21 ha (55.7 % del totale)

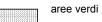
- superifice dell'area permeabile 1.76 ha -sviluppo totale dei canali di drenaggio 1590 m

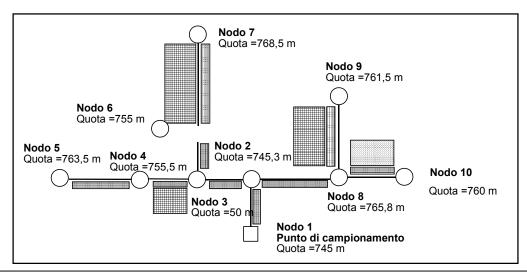
© punto di campionamento

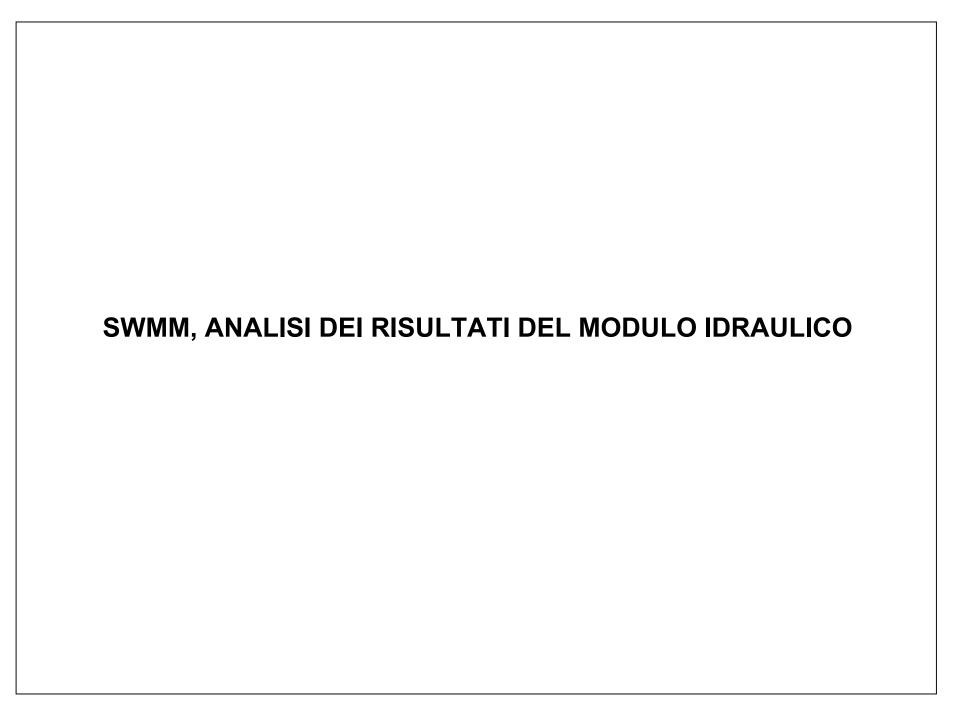
caditoie della rete di fognatura pluviale

Schemi della rete idraulica

bacino sperimentale di Malvaccaro LEGENDA Parchi Caditoie Stradale


Verde


34 N.ro di codice


area urbana di "Parco Aurora"

LEGENDA

